K22P 3319

Reg. No.	:

IV Semester M.Sc. Degree (C.B.S.S. – Reg./Supple./Imp.) Examination, April 2022 (2018 Admission Onwards) MATHEMATICS MAT4C15: Operator Theory

Time: 3 Hours Max. Marks: 80

PART - A

Answer any four questions from this Part. Each question carries 4 marks.

- 1. Let X be a normed space and $A \in BL(X)$. Prove that A is invertible if and only if A is bounded below and surjective.
- 2. Let X and Y be normed spaces and F_1 and $F_2 \in BL(X, Y)$ and $k \in K$. Show that $(F_1 + F_2)' = F_1' + F_2'$, $(kF_1)' = kF_1'$.
- Let X and Y be Banach spaces, F: X → Y is a compact map and R(F) is closed in Y. Prove that F is of finite rank.
- 4. If X is an infinite dimensional normed space and $A \in CL(X)$. Prove that $0 \in \sigma_a(A)$.
- 5. Let H be a Hilbert space. If each (A_n) is self adjoint operator in BL(H) and $||A_n A|| \rightarrow 0$, then prove that A is self adjoint.
- 6. Prove that the adjoint of Hilbert Schmidt operator on a separable Hilbert space is Hilbert Schmidt operator. (4x4=16)

PART-B

Answer any four questions from this Part without omitting any Unit. Each question

UNIT-1

- 7. a) Let X be a normed space and $A \in BL(X)$ be of finite rank. Show that $\sigma_e(A) = \sigma_a(A) = \sigma(A)$.
 - b) Let X be a Banach space over K and A \in BL(X). Show that σ (A) is a compact subset of K.
- 8. a) Let X be a normed space and X' is separable, prove that X is separable.
 - b) Let $1 \le p \le \infty$ and $\frac{1}{p} + \frac{1}{q} = 1$. Show that the dual of Kⁿ with the norm $\|\cdot\|_p$ is linearly isomorphic to Kⁿ with the norm $\|\cdot\|_q$.
- 9. a) Let X be a normed space and (x_n) be a sequence in X. Then prove that (x_n) is weak convergent in X if and only if
 - i) (xn) is a bounded sequence in X and
 - ii) there is some $x \in X$ such that $x'(x_n) \to x'(x)$ for every x' in some subset of X' whose span is dense in X'.
 - b) Let (x'_n) be a sequence in a normed space X. if
 - i) (x'n) is bounded and
 - ii) $(x'_n(x))$ is a Cauchy sequence in K for each x in a subset of X whose span is dense in X.

Then, prove that (x'_n) is weak* convergent in X'. Is the converse true? Justify your answer.

UNIT - II

- a) Let X be a reflexive normed space. Prove that every closed subspace of X is reflexive.
 - b) Examine the reflexivity of $L^p([a, b])$, $1 \le p \le \infty$.
- 11. a) When a normed space X is said to be uniformly convex?
 - b) Let X be a Banach space which is uniformly convex in some equivalent norm. Then prove that X is reflexive. Is the converse true? Justify your answer.